Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 18: 1355940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601798

RESUMO

Introduction: The presence of a widespread cortical synucleinopathy is the main neuropathological hallmark underlying clinical entities such as Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB). There currently is a pressing need for the development of non-human primate (NHPs) models of PDD and DLB to further overcome existing limitations in drug discovery. Methods: Here we took advantage of a retrogradely-spreading adeno-associated viral vector serotype 9 coding for the alpha-synuclein A53T mutated gene (AAV9-SynA53T) to induce a widespread synucleinopathy of cortical and subcortical territories innervating the putamen. Four weeks post-AAV deliveries animals were sacrificed and a comprehensive biodistribution study was conducted, comprising the quantification of neurons expressing alpha-synuclein, rostrocaudal distribution and their specific location. Results: Intraputaminal deliveries of AAV9-SynA53T lead to a disseminated synucleinopathy throughout ipsi- and contralateral cerebral cortices, together with transduced neurons located in the ipsilateral caudal intralaminar nuclei and in the substantia nigra pars compacta (leading to thalamostriatal and nigrostriatal projections, respectively). Cortical afferent systems were found to be the main contributors to putaminal afferents (superior frontal and precentral gyri in particular). Discussion: Obtained data extends current models of synucleinopathies in NHPs, providing a reproducible platform enabling the adequate implementation of end-stage preclinical screening of new drugs targeting alpha-synuclein.

2.
J Mol Med (Berl) ; 101(12): 1587-1601, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819378

RESUMO

The SCN1A gene encodes the alpha subunit of a voltage-gated sodium channel (Nav1.1), which is essential for the function of inhibitory neurons in the brain. Mutations in this gene cause severe encephalopathies such as Dravet syndrome (DS). Upregulation of SCN1A expression by different approaches has demonstrated promising therapeutic effects in preclinical models of DS. Limiting the effect to inhibitory neurons may contribute to the restoration of brain homeostasis, increasing the safety and efficacy of the treatment. In this work, we have evaluated different approaches to obtain preferential expression of the full SCN1A cDNA (6 Kb) in GABAergic neurons, using high-capacity adenoviral vectors (HC-AdV). In order to favour infection of these cells, we considered ErbB4 as a surface target. Incorporation of the EGF-like domain from neuregulin 1 alpha (NRG1α) in the fiber of adenovirus capsid allowed preferential infection in cells lines expressing ErbB4. However, it had no impact on the infectivity of the vector in primary cultures or in vivo. For transcriptional control of transgene expression, we developed a regulatory sequence (DP3V) based on the Distal-less homolog enhancer (Dlx), the vesicular GABA transporter (VGAT) promoter, and a portion of the SCN1A gene. The hybrid DP3V promoter allowed preferential expression of transgenes in GABAergic neurons both in vitro and in vivo. A new HC-AdV expressing SCN1A under the control of this promoter showed improved survival and amelioration of the epileptic phenotype in a DS mouse model. These results increase the repertoire of gene therapy vectors for the treatment of DS and indicate a new avenue for the refinement of gene supplementation in this disease. KEY MESSAGES: Adenoviral vectors can deliver the SCN1A cDNA and are amenable for targeting. An adenoviral vector displaying an ErbB4 ligand in the capsid does not target GABAergic neurons. A hybrid promoter allows preferential expression of transgenes in GABAergic neurons. Preferential expression of SCN1A in GABAergic cells is therapeutic in a Dravet syndrome model.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Animais , Camundongos , Modelos Animais de Doenças , DNA Complementar , Epilepsias Mioclônicas/terapia , Epilepsias Mioclônicas/tratamento farmacológico , Neurônios GABAérgicos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Fenótipo
3.
Brain ; 146(12): 5000-5014, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769648

RESUMO

Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Idoso , Sinucleinopatias/patologia , Substância Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/patologia , Primatas/metabolismo
4.
Biomedicines ; 10(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453499

RESUMO

It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.

5.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203739

RESUMO

It is without any doubt that precision medicine therapeutic strategies targeting neurodegenerative disorders are currently witnessing the spectacular rise of newly designed approaches based on the use of viral vectors as Trojan horses for the controlled release of a given genetic payload. Among the different types of viral vectors, adeno-associated viruses (AAVs) rank as the ones most commonly used for the purposes of either disease modeling or for therapeutic strategies. Here, we reviewed the current literature dealing with the use of AAVs within the field of Parkinson's disease with the aim to provide neuroscientists with the advice and background required when facing a choice on which AAV might be best suited for addressing a given experimental challenge. Accordingly, here we will be summarizing some insights on different AAV serotypes, and which would be the most appropriate AAV delivery route. Next, the use of AAVs for modeling synucleinopathies is highlighted, providing potential readers with a landscape view of ongoing pre-clinical and clinical initiatives pushing forward AAV-based therapeutic approaches for Parkinson's disease and related synucleinopathies.


Assuntos
Pesquisa Biomédica , Dependovirus/genética , Vetores Genéticos/uso terapêutico , Doença de Parkinson/genética , Animais , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos
6.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062940

RESUMO

Mutations in the GBA1 gene coding for glucocerebrosidase (GCase) are the main genetic risk factor for Parkinson's disease (PD). Indeed, identifying reduced GCase activity as a common feature underlying the typical neuropathological signatures of PD-even when considering idiopathic forms of PD-has recently paved the way for designing novel strategies focused on enhancing GCase activity to reduce alpha-synuclein burden and preventing dopaminergic cell death. Here we have performed bilateral injections of a viral vector coding for the mutated form of alpha-synuclein (rAAV9-SynA53T) for disease modeling purposes, both in mice as well as in nonhuman primates (NHPs), further inducing a progressive neuronal death in the substantia nigra pars compacta (SNpc). Next, another vector coding for the GBA1 gene (rAAV9-GBA1) was unilaterally delivered in the SNpc of mice and NHPs one month after the initial insult, together with the contralateral delivery of an empty/null rAAV9 for control purposes. Obtained results showed that GCase enhancement reduced alpha-synuclein burden, leading to improved survival of dopaminergic neurons. Data reported here support using GCase gene therapy as a disease-modifying treatment for PD and related synucleinopathies, including idiopathic forms of these disorders.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Terapia Genética , Glucosilceramidase/genética , Doença de Parkinson/terapia , alfa-Sinucleína/genética , Animais , Dopamina/genética , Neurônios Dopaminérgicos/patologia , Vetores Genéticos/uso terapêutico , Humanos , Macaca/genética , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Mutação/genética , Neuroproteção/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia
7.
Brain Struct Funct ; 225(7): 2153-2164, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32691218

RESUMO

Endocannabinoids are neuromodulators acting on specific cannabinoid CB1 and CB2 G-protein-coupled receptors (GPCRs), representing potential therapeutic targets for neurodegenerative diseases. Cannabinoids also regulate the activity of GPR55, a recently "deorphanized" GPCR that directly interacts with CB1 and with CB2 receptors. Our hypothesis is that these heteromers may be taken as potential targets for Parkinson's disease (PD). This work aims at assessing the expression of heteromers made of GPR55 and CB1/CB2 receptors in the striatum of control and parkinsonian macaques (with and without levodopa-induced dyskinesia). For this purpose, double blind in situ proximity ligation assays, enabling the detection of GPCR heteromers in tissue samples, were performed in striatal sections of control, MPTP-treated and MPTP-treated animals rendered dyskinetic by chronic treatment with levodopa. Image analysis and statistical assessment were performed using dedicated software. We have previously demonstrated the formation of heteromers between GPR55 and CB1 receptor (CB1-GPR55_Hets), which is highly expressed in the central nervous system (CNS), but also with the CB2 receptor (CB2-GPR55_Hets). Compared to the baseline expression of CB1-GPR55_Hets in control animals, our results showed increased expression levels in basal ganglia input nuclei of MPTP-treated animals. These observed increases in CB1-GPR55_Hets returned back to baseline levels upon chronic treatment with levodopa in dyskinetic animals. Obtained data regarding CB2-GPR55_Hets were quite similar, with somehow equivalent amounts in control and dyskinetic animals, and with increased expression levels in MPTP animals. Taken together, the detected increased expression of GPR55-endocannabinoid heteromers appoints these GPCR complexes as potential non-dopaminergic targets for PD therapy.


Assuntos
Núcleo Caudado/metabolismo , Discinesias/metabolismo , Núcleo Accumbens/metabolismo , Transtornos Parkinsonianos/metabolismo , Putamen/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Modelos Animais de Doenças , Macaca fascicularis , Masculino , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
8.
Ann N Y Acad Sci ; 1475(1): 34-42, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32594556

RESUMO

The cannabinoid CB1 receptor (CB1 R) is the most abundant G protein-coupled receptor in the central nervous system, consistent with the important role of endocannabinoids as neuromodulators. Cannabinoids also modulate the function of G protein-coupled receptor 55 (GPR55), which forms heteroreceptor complexes with the CB1 R in the striatum. The aim was to characterize cannabinoid CB1 R-GPR55 heteromers (CB1 R/GPR55Hets) in the basal ganglia input nuclei of nonhuman primates, Macaca fascicularis, both in projection neurons and interneurons, by the in situ proximity ligation assay. Striatal projecting neurons were identified by the retrograde neuroanatomical tracer, biotinylated dextran amine (BDA), injected into external or internal subdivisions of the globus pallidus. Triple immunofluorescent stains were carried out to visualize (1) BDA-labeled neurons, (2) CB1 R/GPR55Hets, and (3) striatal interneurons positive for choline acetyltransferase, parvalbumin, calretinin, or nitric oxide synthase. CB1 R/GPR55Hets were identified within both types of projection neurons as well as all interneurons except those that are cholinergic. Moreover, CB1 R/GPR55Hets were found specifically in the neuronal cell surface, and also in intracellular membranes. Further research efforts will be needed to confirm the intracellular occurrence of heteromers and their potential as therapeutic targets in diseases related to motor control imbalances, particularly within a parkinsonian context (with or without levodopa-induced dyskinesia).


Assuntos
Corpo Estriado/metabolismo , Neurônios/metabolismo , Multimerização Proteica , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Anticorpos/metabolismo , Biomarcadores/metabolismo , Interneurônios/metabolismo , Macaca fascicularis , Masculino
9.
Brain Struct Funct ; 223(1): 343-355, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28835999

RESUMO

Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene. Mutations in GBA1 gene lead to Gaucher's disease, the most prevalent lysosomal storage disorder. GBA1 mutations reduce GCase activity, therefore promoting the aggregation of alpha-synuclein, a common neuropathological finding underlying Parkinson's disease (PD) and dementia with Lewy bodies. However, it is also worth noting that a direct link between GBA1 mutations and alpha-synuclein aggregation indicating cause and effect is still lacking, with limited experimental evidence to date. Bearing in mind that a number of strategies increasing GCase expression for the treatment of PD are currently under development, here we sought to analyze the baseline expression of GCase in the brain of Macaca fascicularis, which has often been considered as the gold-standard animal model of PD. Although as with other lysosomal enzymes, GCase is expected to be ubiquitously expressed, here a number of regional variations have been consistently found, together with several specific neurochemical phenotypes expressing very high levels of GCase. In this regard, the most enriched expression of GCase was constantly found in cholinergic neurons from the nucleus basalis of Meynert, dopaminergic cells in the substantia nigra pars compacta, serotoninergic neurons from the raphe nuclei, as well as in noradrenergic neurons located in the locus ceruleus. Moreover, it is also worth noting that moderate levels of expression were also found in a number of areas within the paleocortex and archicortex, such as the entorhinal cortex and the hippocampal formation, respectively.


Assuntos
Encéfalo/enzimologia , Glucosilceramidase/metabolismo , Animais , Encéfalo/anatomia & histologia , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/enzimologia , Macaca fascicularis/anatomia & histologia , Masculino , Vias Neurais/metabolismo
10.
Brain Struct Funct ; 222(4): 1767-1784, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27612857

RESUMO

Although it has long been widely accepted that dopamine receptor types D1 and D2 form GPCR heteromers in the striatum, the presence of D1-D2 receptor heteromers has been recently challenged. In an attempt to properly characterize D1-D2 receptor heteromers, here we have used the in situ proximity ligation assay (PLA) in striatal sections comprising the caudate nucleus, the putamen and the core and shell territories of the nucleus accumbens. Experiments were carried out in control macaques as well as in MPTP-treated animals (with and without dyskinesia). Obtained data support the presence of D1-D2 receptor heteromers within all the striatal subdivisions, with the highest abundance in the accumbens shell. Dopamine depletion by MPTP resulted in an increase of D1-D2 density in caudate and putamen which was normalized by levodopa treatment. Two different sizes of heteromers were consistently found, thus suggesting that besides individual heteromers, D1-D2 receptor heteromers are sometimes organized in macromolecular complexes made of a number of D1-D2 heteromers. Furthermore, the PLA technique was combined with different neuronal markers to properly characterize the identities of striatal neurons expressing D1-D2 heteromers. We have found that striatal projection neurons giving rise to either the direct or the indirect basal ganglia pathways expressed D1-D2 heteromers. Interestingly, macromolecular complexes of D1-D2 heteromers were only found within cholinergic interneurons. In summary, here we provide overwhelming proof that D1 and D2 receptors form heteromeric complexes in the macaque striatum, thus representing a very appealing target for a number of brain diseases involving dopamine dysfunction.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Núcleo Caudado/metabolismo , Macaca fascicularis , Masculino , Núcleo Accumbens/metabolismo , Transtornos Parkinsonianos , Putamen/metabolismo
11.
Brain Struct Funct ; 220(5): 2721-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24972960

RESUMO

Although type 1 cannabinoid receptors (CB1Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas the expression is markedly reduced in dyskinetic animals. Moreover, an in situ proximity ligation assay was used to qualitatively assess the presence of CB1Rs and CB2Rs, as well as CB1R-CB2R heteromers within basal ganglia output neurons in all animal groups (control, parkinsonian and dyskinetic macaques). A marked reduction in the number of CB1Rs, CB2Rs and CB1R-CB2R heteromers was found in dyskinetic animals, mimicking the observed reduction in CB1R and CB2R mRNA expression levels. The fact that chronic levodopa treatment disrupted CB1R-CB2R heteromeric complexes should be taken into consideration when designing new drugs acting on cannabinoid receptor heteromers.


Assuntos
Gânglios da Base/metabolismo , Neurônios/metabolismo , Transtornos Parkinsonianos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Canabinoides/metabolismo , Levodopa/metabolismo , Macaca , Masculino
12.
Front Neuroanat ; 8: 146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520629

RESUMO

Calbindin (CB) is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH) and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA) and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv) co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%), followed by neurons located in the SNcd (34.7%). As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%), whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%). Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB) into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus (GPi). As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not giving rise to nigrostriatal projections and indeed CB-ir/TH-ir neurons only originate nigroextrastriatal projections.

13.
Neurobiol Dis ; 47(3): 347-57, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659306

RESUMO

The A(2A)R has become a therapeutic target in Parkinson disease due to its functional role in the striatum, capable of modulating dopaminergic neurotransmission in the basal ganglia. No conclusive evidence, however, has been provided to demonstrate the existence of A(2A)Rs in the output nuclei of the basal ganglia: the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). Using immunohistochemistry and in situ hybridization techniques we have confirmed the presence of A(2A)Rs in both the striatum (medium spiny and cholinergic neurons) and the external segment of the globus pallidus (GPe), in the monkey. The antibody routinely used to label A(2A)Rs failed to detect A(2A)R-positive neurons in the GPi and SNr, however, in situ hybridization showed that A(2A)R mRNA transcripts were indeed present in both these nuclei. Surprisingly, by labeling pallidothalamic and nigrothalamic projection neurons originating in the GPi and SNr with the neuronal retrograde tracer cholera toxin subunit B (CTB), the receptor protein was unmasked and detectable using the antibody. This unmasking of the protein was specific to CTB and not an artifact of the tracer. We have shown unequivocally that the A(2A)R is present in the output nuclei of the primate basal ganglia, however, to be able to detect the receptor immunohistochemically, unmasking the protein with CTB was necessary. The presence of A(2A)Rs in the GPi and SNr suggests that these output nuclei could be targeted therapeutically in Parkinson disease to restore abnormal activity in the basal ganglia.


Assuntos
Toxina da Cólera/metabolismo , Corpo Estriado/citologia , Globo Pálido/citologia , Neurônios/metabolismo , Receptores A2 de Adenosina/metabolismo , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Colina O-Acetiltransferase/metabolismo , Corpo Estriado/metabolismo , Dextranos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Globo Pálido/metabolismo , Macaca fascicularis , Masculino , Vias Neurais/fisiologia , RNA Mensageiro/metabolismo , Receptores A2 de Adenosina/genética
14.
Brain Struct Funct ; 216(4): 371-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21512896

RESUMO

GABAergic neurons within the internal division of the globus pallidus (GPi) are the main source of basal ganglia output reaching the thalamic ventral nuclei in monkeys. Following dopaminergic denervation, pallidothalamic-projecting neurons are known to be hyperactive, whereas a reduction in GPi activity is typically observed in lesioned animals showing levodopa-induced dyskinesia. Besides the mRNAs coding for GABAergic markers (GAD65 and GAD67), we show that all GPi neurons innervating thalamic targets also express transcripts for the isoforms 1 and 2 of the vesicular glutamate transporter (vGlut1 and vGlut2 mRNA). Indeed, dual immunofluorescent detection of GAD67 and vGlut1/2 confirmed the data gathered from in situ hybridization experiments, therefore demonstrating that the detected mRNAs are translated into the related proteins. Furthermore, the dopaminergic lesion resulted in an up-regulation of expression levels for both GAD65 and GAD67 mRNA within identified pallidothalamic-projecting neurons. This was coupled with a down-regulation of GAD65/67 mRNA expression levels in GPi neurons innervating thalamic targets in monkeys showing levodopa-induced dyskinesia. By contrast, the patterns of gene expression for both vGlut1 and vGlut2 mRNAs remained unchanged across GPi projection neurons in control, MPTP-treated and dyskinetic monkeys. In summary, both GABAergic and glutamatergic markers were co-expressed by GPi efferent neurons in primates. Although the status of the dopaminergic system directly modulates the expression levels of GAD65/67 mRNA, the observed expression of vGlut1/2 mRNA is not regulated by either dopaminergic removal or by continuous stimulation with dopaminergic agonists.


Assuntos
Dopamina/deficiência , Discinesia Induzida por Medicamentos/metabolismo , Neurônios GABAérgicos/metabolismo , Globo Pálido/citologia , Neurônios Eferentes/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Colorimetria , Primers do DNA/genética , Imunofluorescência , Globo Pálido/fisiologia , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Hibridização in Situ Fluorescente , Levodopa/toxicidade , Macaca fascicularis , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Reação em Cadeia da Polimerase , Estatísticas não Paramétricas , Tálamo/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
15.
Brain Struct Funct ; 216(4): 319-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21499800

RESUMO

The tegmental pedunculopontine nucleus (PPN) is a basal ganglia-related structure that has recently gained renewed interest as a potential surgical target for the treatment of several aspects of Parkinson's disease. However, the underlying anatomical substrates sustaining the choice of the PPN nucleus as a surgical candidate remain poorly understood. Here, we characterized the chemical phenotypes of different subtypes of PPN efferent neurons innervating the rat parafascicular (PF) nucleus. Emphasis was placed on elucidating the impact of unilateral nigrostriatal denervation on the expression patterns of the mRNA coding the vesicular glutamate transporter type 2 (vGlut2 mRNA). We found a bilateral projection from the PPN nucleus to the PF nucleus arising from cholinergic and glutamatergic efferent neurons, with a small fraction of projection neurons co-expressing both cholinergic and glutamatergic markers. Furthermore, the unilateral nigrostriatal depletion induced a bilateral twofold increase in the expression levels of vGlut2 mRNA within the PPN nucleus. Our results support the view that heterogeneous chemical profiles account for PPN efferent neurons innervating thalamic targets. Moreover, a bilateral enhancement of glutamatergic transmission arising from the PPN nucleus occurs following unilateral dopaminergic denervation, therefore sustaining the well-known hyperactivity of the PF nucleus in parkinsonian-like conditions. In conclusion, our data suggest that the ascending projections from the PPN that reach basal ganglia-related targets could play an important role in the pathophysiology of Parkinson's disease.


Assuntos
Núcleos Intralaminares do Tálamo/citologia , Neurônios Eferentes/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Núcleo Tegmental Pedunculopontino/citologia , RNA Mensageiro/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Primers do DNA/genética , Ácido Glutâmico/metabolismo , Técnicas Histológicas , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Microdissecção , Reação em Cadeia da Polimerase , Ratos , Estilbamidinas
16.
J Psychopharmacol ; 25(1): 97-104, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20488834

RESUMO

The putative presence of the cannabinoid receptor type 2 (CB(2)-R) in the central nervous system is still a matter of debate. Although first described in peripheral and immune tissues, evidence suggesting the existence of CB(2)-Rs in glial cells and even neurons has been made available more recently. By taking advantage of newly designed CB(2)-R mRNA riboprobes, we have demonstrated by in situ hybridization and PCR the existence of CB2-R transcripts in a variety of brain areas of the primate Macaca fascicularis, including the cerebral cortex and the hippocampus, as well as in the external and internal divisions of the globus pallidus, both pallidal segments showing the highest abundance of CB(2)-R transcripts. In this regard, the presence of the messenger coding CB(2)-Rs within the pallidal complex highlights their consideration as potential targets for the treatment of movement disorders of basal ganglia origin.


Assuntos
Gânglios da Base/fisiopatologia , Globo Pálido/metabolismo , Transtornos dos Movimentos/tratamento farmacológico , Receptor CB2 de Canabinoide/genética , Animais , Gânglios da Base/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Macaca fascicularis , Masculino , Terapia de Alvo Molecular , Transtornos dos Movimentos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Neurobiol Dis ; 39(3): 381-92, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20452426

RESUMO

The current basal ganglia model considers the internal division of the globus pallidus and the substantia nigra pars reticulata as the sole sources of basal ganglia output to the thalamus. However, following the delivery of retrograde tracers into the ventral anterior/ventral lateral thalamic nuclei, a moderate number of labeled neurons were found within the subthalamic nucleus (STN) in control cases, MPTP-treated monkeys and animals with levodopa-induced dyskinesias. Furthermore, dual tracing experiments showed that subthalamo-thalamic and subthalamo-pallidal projections arise from different subpopulations of STN efferent neurons. Moreover, upregulated expression of the mRNA coding the vesicular glutamate transporter 2 (vGlut2) was found in retrogradely-labeled STN neurons in MPTP-treated monkeys. By contrast, there is a reduction in vGlut2 mRNA expression in subthalamo-thalamic neurons in dyskinetic monkeys. In conclusion, our findings support the presence of a direct projection from the STN to the ventral thalamus that appears to be functionally modulated by dopaminergic activity.


Assuntos
Macaca fascicularis/fisiologia , Doença de Parkinson Secundária/fisiopatologia , Núcleo Subtalâmico/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Masculino , Microscopia Confocal , Vias Neurais/fisiologia , Marcadores do Trato Nervoso , Neurônios/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
18.
J Neurosci Methods ; 194(1): 28-33, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19961877

RESUMO

Most of our current understanding of brain circuits is based on hodological studies carried out using neuroanatomical tract-tracing. Our aim is to advance one step further by visualizing the functional correlate in a given circuit. In this regard, we believe it is feasible to combine retrograde tracing with fluorescence, non-radioactive in situ hybridization (ISH) protocols. The subsequent detection at the single-cell level of the expression of a given mRNA within retrograde-labeled neurons provides information regarding cellular function. This may be of particular interest when trying to elucidate the performance of brain circuits of interest in animal models of brain diseases. Several combinations of retrograde tracing with either single- and double-ISH are presented here, together with some criteria that influence the selection of the tracer to be used in conjunction with the strong demands of the ISH.


Assuntos
Química Encefálica/genética , Expressão Gênica/fisiologia , Hibridização In Situ/métodos , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neuroanatomia/métodos , Animais , Dopamina/fisiologia , Corantes Fluorescentes , Globo Pálido/citologia , Glutamato Descarboxilase/metabolismo , Haplorrinos , Microscopia Confocal , Oligonucleotídeos Antissenso/síntese química , Perfusão , RNA/biossíntese , RNA/genética , Ratos , Ratos Wistar , Estilbamidinas , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiologia , Sobrevida , Fixação de Tecidos , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/genética
19.
Brain Res Bull ; 78(2-3): 55-9, 2009 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-18790023

RESUMO

The situation of the caudal intralaminar thalamic nuclei within basal ganglia circuits has gained increased attention over the past few years. Although initially considered as a "non-specific" thalamic nuclei, tract-tracing studies carried out over the past two decades have demonstrated that the centromedian-parafascicular thalamic complex (CM-Pf) is connected to virtually all basal ganglia components and related nuclei. Although the anatomical basis sustaining the thalamic modulation of basal ganglia circuits has long been characterized, the functional significance of these transverse circuits still remain to be properly accommodated within the basal ganglia model, both under normal conditions as well as in situations of dopaminergic depletion. However, the recent demonstration of primary (e.g., non-dopamine related) neurodegenerative phenomena restricted to the CM-Pf in Parkinson's disease (PD) has renewed interest in the role played by the caudal intralaminar nuclei in the pathophysiology of PD. Concomitantly, evidence has become available of increased metabolic activity in the caudal intralaminar nuclei in rodent models of PD. Finally, CM-Pf neurosurgery in patients suffering from PD has produced contrasting outcomes, indicating that a consensus is still to be reached regarding the potential usefulness of targeting the caudal intralaminar nuclei to treat movement disorders of basal ganglia origin.


Assuntos
Núcleos Intralaminares do Tálamo/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Animais , Gânglios da Base/patologia , Gânglios da Base/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Humanos , Núcleos Intralaminares do Tálamo/metabolismo , Núcleos Intralaminares do Tálamo/patologia , Transtornos dos Movimentos/terapia , Doença de Parkinson/terapia , Resultado do Tratamento
20.
Neurobiol Dis ; 31(3): 422-32, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18598767

RESUMO

GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons.


Assuntos
Globo Pálido/metabolismo , Ácido Glutâmico/metabolismo , Transtornos Parkinsonianos/metabolismo , Tálamo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Dopamina/deficiência , Regulação para Baixo/fisiologia , Vias Eferentes/metabolismo , Vias Eferentes/fisiopatologia , Núcleo Entopeduncular/metabolismo , Núcleo Entopeduncular/fisiopatologia , Regulação Enzimológica da Expressão Gênica/genética , Globo Pálido/fisiopatologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Transtornos Parkinsonianos/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Substância Negra/metabolismo , Substância Negra/fisiopatologia , Transmissão Sináptica/fisiologia , Tálamo/fisiopatologia , Regulação para Cima/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...